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SUMMARY: A novel synthetic approach to the 1 B-methyl carbapenem key precursor is described -- 

whichinvolvesthe chelation-controlled double-asymmetric aldol reaction as the key step. 

Since the discovery of the enhanced chemical and metabolic stability of 1 B-methyl 

carbapenem antibiotics such as 1, 2 considerable effort has been devoted to the 

stereocontrolled synthesis of the optically active key precursor 2. 3 The most popular and 

successful entries to 2 have so far relied on the aldol-type reaction of the (t)-acetoxy 

azetidinone 34 with properly designed chira13b'c or achira13d-f metal enolates 4 (Route A in 

Scheme I). Retrosynthetic analysis suggested an entirely different approach (Route B) which 
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would incorporate the connection of the chiral "left-half" 7 with the chiral "right-half" 8 

via an aldol reaction followed by the well-established i-C4 cyclization of hydroxamate 6.5 We 

now report the successful realization of this novel approach starting with the two optically 

active O-hydroxy esters 9 and 10, both commercially available in quantity, The key feature is 

the remarkable high efficiency of consonant double stereodifferentiation in the double- 

asymmetric aldol process. 6 

Stereochemical analysis of the asymmetric aldol process led us to employ chelation- 

controlled conditions. '18 Thus, we carried out reactions of the silyl ketene acetal 7 (R=Me 

or Et)' with the B-benzyloxy aldehyde 8 derived from 10" in dichloromethane at -7O%-40 'C 

under Lewis acid conditions [TiC14. (I-PrO)TiClS, or SnC14]. We found that the aldol reaction 

was best achieved by the specific combination of 7 (R=Et) with TiC14 to afford 75% yield" of 

the desired aldol 5 in a remarkably high diastereomeric purity (297%) as shown by eq 1.12q13 

The relative stereochemistry of 5, while eventually confirmed by its conversion to 2, could be 

deduced from 500 MHz 'H NMR comparision of its acetonide with other diastereomeric acetonides 

separately prepared.8'14 Thus the crucial aldol reaction established the four contiguous 

chiral centers required. 

As expected, a similar reaction of the antipode of 7 with 8 resulted in a dramatic 

decrease in diastereofacial selectivity (eq Z).15 Thus, the chelation-controlled aldol 

reaction of the 7(@/8(S) pair is clearly demonstrated to show the favorable double stereo- 

differentiation in which the inherent diastereoface preference of the two reactants may 

reinforce one another, as visualized the transition state A, compared with B for the 7(2)/8(S) 

pair. 
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The transformation of the aldol 5 to the key precursor 2 is straightforward (Scheme II). 

Thus, aldol 5 was converted, after selective silylation. to hydroxamate 6 by the modification 
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of Weinreb's method!6'17 Cyclization of 6 was best achieved by the mesylation/hydroxaminolysis 

sequence5 to give the B-lactam 11 with >95% diastereomeric purity (HPLC).18 The O-lactam 11 

was then subjected to the Birch reduction to give the azetidinone 12." Finally, oxidation of 

12 followed by treatment with diazomethane furnished the desired key precursor 2 (R=CH3) in 

essentially 100% ee. Its physical and spectral data were identical with those reported [mp 

119-120 o, [a]~5~21.10 (c 0.60, CH2Cl2); lit.' mp 120-121 'C, [o]~2"21.00 (c 2.09, CH2C12)]. 

Scheme II 

11 12 

(a) (i) t-BuMe2SiC1, imidazo'ie, DMF, 25"C;(ii) AlMe3/MeONH2HC1, toluene, 25°C. 

(b) (i).MeS02C1, pyridine, 25"C;(ii) K2C03, MeOH, 25'C. (c) Li, EtNH2-'&BuOH- 

THF (3:1:1), -40°C. (d) (i) Cr03, pyridine, 25"C;(ii) CH2N2, Et20, 25°C 

In summary, we have developed a novel, efficient approach to the l&methyl carbapenem 

precursor employing the chelation-controlled double-asymmetric aldol reaction as the key step. 

The easy availability of the optically active starting materials, coupled with the high 

efficacy of stereocontrol, places the present approach in a unique position for the practical 

synthesis of IB-methyl carbapenem antibiotics. Further improvement of this approach as well as 

mechanistic studies on this interesting aldol process are under way. 
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Direct cyclization via the Mitsunobu reaction (dimethyl azodicarboxylatejPh3P) afforded 

only 38% yield of 11. 

Under the conditions described in Scheme II, 29% of 11 was recovered. Particularly 

noteworthy is that the presence of A-BuOH is essential for deprotecting both the y- 

methoxy and benzyl groups, otherwise only the t&demethoxylation product was obtained 

quantitatively. 
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